Benvinguts! Sóc l'Anna Cabré

una científica que treballa en interaccions climàtiques
i prediccions sobre el futur de la nostra Terra


"Homeward Bound #4" participant

Qui sóc?

Vaig néixer a Barcelona el 1980. Ara mateix em defineixo com a oceanògrafa, però la meva formació és multidisciplinària. Vaig estudiar física a Barcelona, i després vaig fer un doctorat en cosmologia sobre l'estructura a gran escala de l'Univers a l'Institut de Ciències Espacials. Durant l'any 2009, em vaig traslladar a Philadelphia (EUA) per un contracte postdoctoral en temes de lens gravitacionals i gravetat modificada a la Universitat de Pennsylvania. Vaig aprendre un munt de tècniques, i també el procés de 'fer ciència' i 'acadèmia', però també vaig descobrir que l'Univers em queda massa lluny, i que el que necessitava era tocar de peus a terra, així que a poc a poc vaig passar a estudiar la Terra, el clima, i els oceans al Departament de la Terra i medi ambient, i més endavant vaig continuar la meva recerca a l'Institut de Ciències Marines ja de tornada a Barcelona. Mentrestant, la vida va passant. Ara estic criant dues personetes, visc entre Alemanya i Barcelona, i nedo, escric, toco la flauta i ballo tan sovint com puc.

El meu objectiu ara és explorar fora del món teòric on la meva recerca viu (dins de l'ordinador) i centrar-me en comunicació de ciència i polítiques per a incentivar el canvi cap a un món millor. Com a primer pas, estic participant en un programa de lideratge per a dones que culmina amb una aventura a l'Antàrtida. Porteu-me a l'Antàrtida!

Biografia resumida

  • Investigadora Associada a l'Institut de Ciències del Mar (Barcelona) i a la Universitat de Pennsylvania (Philadelphia) (Des de juliol 2018)
  • 'Beatriu de Pinós' postdoc (co-financiada amb les accions Marie S Curie) a l'Institut de Ciències del Mar (Barcelona) (2016-2018) amb J.L. Pelegri
  • Investigadora postdoctoral al Dept. de la Terra i Ciències Medioambientals de la UPenn (2012-2015), amb Irina Marinov
  • Investigadora postdoctoral al Dept. de Física de UPenn (2009-2012), amb Bhuvnesh Jain
  • Tesis doctoral a l'Institut de Ciències Espacials (Barcelona) en cosmologia (2004-2008) (Descarrega la tesis), amb E. Gaztañaga
  • Física a la Universitat de Barcelona (1998-2003)
Descarrega el CV

Programa Homeward Bound a l'Antàrtida

He estat seleccionada per participar en un programa d'un any de durada per millorar el lideratge en dones científices i participar en decisions polítiques relatives al canvi climàtic. Aquest programa culmina amb un creuer de 3 setmanes a l'Antàrtida amb conferències a bord.

HB és una iniciativa de lideratge mundial que té com a objectiu establir una xarxa de 1000 dones amb un bagatge STEMM durant els propers 10 anys. El programa els proporcionarà el lideratge, capacitats estratègiques i de comunicació per ajudar a la promoció de la dona en els llocs de decisió afectant la política entorn de la sostenibilitat del nostre planeta ".

Per què Antàrtida?

L'Antàrtida continua sent l'únic continent sense ciutadans permanents. No obstant això, algunes parts ja han notat les conseqüències de l'emissió de carboni ( See). L'Antàrtida és de naturalesa pura en la seva forma més brutal. Estar allà amb dones afins proporcionarà un entorn ideal per a la col · laboració, l'aprenentatge i una història per explicar, condició imprescindible per inspirar el canvi necessari.

Per què ara?

Si no és ara, quan? El canvi climàtic ja està passant i les conseqüències són notables en moltes parts del món, amb les pitjors conseqüències en els països més impotents. Com a científica del clima, crec que no tinc cap excusa per no intentar-ho. Crec que és possible un món millor i espero poder fer una contribució. Per a un estudi extens (i molt estudiat) sobre els efectes del canvi climàtic (en anglès), vegeu el IPCC report.

Per què jo?

Nosaltres, els científics, sovint estem tan centrats en la nostra recerca i la necessitat de buscar feina i lloc per viure contínuament que ens oblidem de la importància que té el comunicar la ciència. De què serveixen els nostres coneixements i habilitats per a la societat i per al futur de la Terra si no els compartim? Jo ja tinc el fons científic, però sé que això no és suficient per iniciar el canvi que necessitem. Tinc l'energia i la perseverança necessàries per elevar el meu coneixement, però sens dubte podria utilitzar algunes conferències de lideratge.

Per què dones?

Estem molt poc representades en posicions de lideratge. En algun lloc del procés, una gran proporció de les dones es perden per diverses raons, una de les més importants és que la societat encara premia i espera que els homes assumeixin aquestes posicions. Sembla necessari tancar la bretxa de gènere i veure tot el que les dones podem oferir a la taula de lideratge. Tan sols poden sorgir coses bones d'aquesta iniciativa.

M'ajudeu?

Visiteu la meva pàgina crowdfunding amb més detalls sobre el programa, el qual està subvencionat a través de donants però només per la meitat del cost total. Si sabeu d'alguna companyia (verda i considerada amb les polítiques de gènere), institució, escola que podria estar interessada en donar a la causa, escriviu-me un email! Les 6 espanyoles seleccionades per a participar en el programa ens hem unit per treballar juntes. Visita la nostra pàgina EllasLideran.cc

Clima i Oceanografia

Estudio els models del sistema terrestre per comprendre la gran variabilitat espacial i temporal dels patrons climàtics oceànics i atmosfèrics. Estic interessada a predir els canvis a mitjà i llarg termini a causa de l'escalfament climàtic i de separar aquests canvis de la variabilitat natural. En altres paraules, estic interessada en els canvis de personalitat a llarg termini de la nostra Terra (no els canvis d'humor puntuals, que equivaldrien al temps que fa cada dia). Vegeu a continuació les principals línies de recerca en què participo.

Publicacions


Transferència entre els girs subtropical i tropical a l'Atlàntic Sud

Modelització de fitoplàncton marí

Convecció de mar obert a l'Oceà del Sud i teleconnexions a la resta de la Terra.

Observacions de fitoplàncton des de l'espai

Zones d'Oxigen mínim al Pacífic

Evolució de pesca amb el canvi climàtic



South Atlantic transfer

We study regions that contribute to the northward heat transfer that occurs in the top 1000m of the Atlantic Ocean. The South Atlantic plays a crucial role in the returning limb of the Atlantic meridional overturning circulation that originates with sinking of cold and salty sater in the North Atlantic; the South Atlantic is the only basin that transfers heat equatorward from the subtropics to the tropics to compensate (northward) for the southward export of North Atlantic Deep Water (NADW), but it has traditionally not studied as much as the homologous North Atlantic. We have used a lagrangian technique to track the origin and path of the waters that end up in the subtropical or tropical gyres. We study the volume transport associated to each route, the paths of propagation, the spatial and depth structure of these paths, and the heat and freshwater gain along these pathways.


Open-ocean deep convection in the Southern Ocean

During the mid-1970s, a huge hole in the sea ice (polynya) opened during winter in the Weddell Sea, east of the Antarctic Peninsula, and was observed with satellites that had been launched few years before. The polynya closed and has only reemerged during the last 2 winters. It is open-ocean strong water column mixing that brings relatively warm water from the deep ocean to the surface and melts the ice. All the models that have this mixing events predict a stoppage of mixing with climate warming. We have explored the variability in Southern Ocean surface temperatures that result from pulses in open-ocean deep convection in the Weddell Sea (in the Southern Ocean), with a long 1000-year control experiment with pre-industrial conditions that exhibits strong convective events every ~70 years. We have found that fluctuations in Southern Ocean surface temperatures modify the energetic balance at the top of the atmosphere and the propagation of heat transport in both the atmosphere and the ocean. The atmospheric changes result for example in a weakening of the Southern Ocean westerlies, a warming of the atmosphere, and an increase in precipitation towards the southern tropics. The oceanic changes result in a strengthening of the formation of Antarctic bottom waters, and a weakening of the Meridional Overturning circulation during convective events. See this communication release. Here a copy of the published paper.


Oxygen Minimum Zones in the Pacific

We analyse simulations of the Pacific Ocean oxygen minimum zones (OMZs) from 11 Earth system model contributions to the Coupled Model Intercomparison Project Phase 5, focusing on the mean state and climate change projections. The eastern tropical regions are often low in oxygen due to sluggish ventilation and strong biological activity that consumes lots of oxygen. Oxygen is essential for most types of oceanic life, hence it is crucial to understand these regions and the predicted evolution within the next century. The simulations tend to overestimate the volume of the OMZs, especially in the tropics and Southern Hemisphere. Under the climate change scenario RCP8.5, all simulations yield small and discrepant changes in oxygen concentration at mid depths in the tropical Pacific by the end of the 21st century due to an almost perfect compensation between warming-related decrease in oxygen saturation and decrease in biological oxygen utilization. See publication (pdf)


Phytoplankton modeling

Understanding how global phytoplankton populations will respond to climate change is critical, since phytoplankton provide the ultimate food source for all marine organisms and draw down atmospheric CO2 by fixing inorganic carbon into organic matter via photosynthesis. We analyzed for the first time all 16 Coupled Model Intercomparison Project Phase 5 models with explicit marine ecological modules to identify the common mechanisms involved in projected phytoplankton biomass, productivity, and organic carbon export changes over the twenty-first century in the RCP8.5 scenario (years 2080–2099) compared to the historical scenario (years 1980–1999). All models predict decreases in primary and export production globally of up to 30 % of the historical value. ("Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models")
We also analyzed how phytoplankton change in the Southern Ocean. The models predict a zonally banded pattern of phytoplankton abundance and production changes within four regions: the subtropical ( 30 to 40 S), transitional (40 to 50S), subpolar (50 to 65S) and Antarctic (south of 65S) bands. We find that shifts in bottom-up variables (nitrate, iron and light availability) drive changes in phytoplankton abundance and production on not only interannual, but also decadal and 100-year timescales – the timescales most relevant to climate change. ("A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite")
See this outreach article summarizing our research.


Phytoplankton observations from satellite color data

Recent technological evolution has allowed the observation of phytoplankton abundance from space. When the Earth is not covered in clouds, satellites can see through to the surface of the Earth, and transform the ocean color into phytoplankton abundance with algorithms that use Chlorophyll as an indicator of mini-algae presence. Chlorophyll is a green pigment found in plants, responsible for absorbing the light needed for the photosynthesis. Hence, greener parts of the ocean have more biological productivity.
However, Chl and phytoplankton abundance do not follow a linear relation, as Chlorophyll can photoadapt differently depending on the light, nutrients, and temperature. I have been working with Tihomir Kostadinov and the group at UPenn on a novel bio-optical algorithm that retrieves size-partitioned phytoplankton carbon from ocean color satellite data, independently from Chlorophyll. This alrogithm is based on backscattering; the size of phytoplankton changes the spectrum of the light when scattering. We have studied the seasonality, interannual variability (associated to well known indices such as 'El Niño'), and long-term trends for phytoplankton and the different sizes in comparison to Chl, and have detected interesting differences across biomes.
Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution
Phenology of Size-Partitioned Phytoplankton Carbon-Biomass from Ocean Color Remote Sensing and CMIP5 Models
Inter-comparison of phytoplankton functional type phenology metrics derived from ocean color algorithms and Earth System Models


Effect of climate change on fisheries

Climate change is going to affect the habitat conditions that ultimately affect fisheries. Changes in temperature, stratification of the water column, wind patterns, food supply, all these modify the biomes where fish live. I have collaborated with a group from the Marine Research Division at AZTI that use the output of models to predict how the habitat of tuna, eel, anochovy is going to change in the next 50-100 years. See the recently published paper on 'Historical trends and future distribution of anchovy spawning in the Bay of Biscay'

Publicacions

Google Scholar
Research Gate

L'Univers

Vaig fer la meva tesi doctoral sobre l'estructura a gran escala de l'Univers a l'Institut de Ciències de l'Espai i un postdoc a la Universitat de Pennsylvania. El meu enfocament era comparar dades d'estructura a gran escala amb teories cosmològiques estàndard amb l'objectiu de determinar les millors teories (i descartar teories incompatibles amb les observacions) i també determinar els valors dels diferents components de l'Univers. Aquest és el meu núvol de paraules clau de recerca, creat amb Scimeter.

Publicacions en cosmologia Descarrega la tesis

Efecte Sachs-Wolfe integrat

Lens gravitacionals
Credit: NASA/ESA

Oscil·lacions acústiques bariòniques

Gravetat modificada en galàxies enanes

Dark Energy Survey

Sloan Digital Sky Survey


(en anglès) Physicists currently believe that the universe is composed basically of dark energy (70%) and dark matter (25%), both unknown components. The rest is made of known (baryonic) matter.
The standard cosmological model starts with Big Bang, followed by a rapid period of expansion of the universe called inflation. After that, tiny almost homogeneous fluctuations that conform the primordial universe, start to grow while universe expands now in a relatively slow rhythm. 380,000 years after the Big Bang, the temperature is low enough to make the universe become neutral after the recombination of atoms with electrons. Photons are almost free of interactions since then and reach us in the form of a Cosmic Microwave Background (CMB). We can measure the spatial anisotropy spectrum of CMB temperatures and compare it to the expected spectrum of acoustic oscillations. This comparison provides a direct geometrical test from which we can deduce that universe is flat or nearly flat. This can be explained if we introduce a new constituent in the universe apart from matter, the dark energy. Dark energy acts as anti-gravity that accelerates the expansion and is also observed through standard candles Supernovae Ia. Although there is a well motivated model that can explain observations, neither dark matter nor dark energy are known elements, so it is important to use the large amount of newly available data to obtain tighter constraints on the constituents of the universe, the evolution of growth perturbations, the expansion history, and also to explore other alternatives, such as modification of gravity.
I worked with data from the Sloan Digital Sky Survey and with simulations that were prepared for Dark Energy Survey, that is now ongoing. I mostly used Luminous Red Galaxies as my favourite tracer of dark matter. These galaxies are intrinsically bring and hence can be seen further away and trace a larger volume than normal galaxies. I studied the redshift space distortions that arise due to the peculiar motion of galaxies, when shifts in the light spectrum due to the movement of galaxies are confused with the shifts due to the expansion of the Universe. These distortions are one of the ways that cosmologists have to study directly the growth of perturbations in the space-time. I also worked on the Integrated Sachs Wolfe effect (ISW), another direct way to study the growth trhough the evolution of gravitational potentials. ISW is detected when cross-correlating the remote cosmic microwave map with any more recent map that traces Large Scale Structure. Photons from the CMB can be modified when passing through the potential wells created by the large scale strucutre, if for example these potentials change with time. We can detect dark energy thanks to ISW, since we need a dark energy dominated universe to have an evolution of gravitational wells (although this could also be achieved by having a non-flat universe). Luminous Red Galaxies galaxies also allowed us to detect the baryon acoustic peak in the averaged correlation function, and we also detected it in the line-of-sight direction, which means a direct calculation of the Hubble constant! I also worked with photometric surveys (angular projections, photometric redshifts). I worked on modeling weak gravitational lensing as a way to also determine the dark matter in the Universe. Light from far away galaxies is bended when passing through all the dark matter between them and us. Finally, I was studying how to detect (or rule out) a type of modified gravity in dwarf (small) galaxies.

Publications

ADS publication list
astro-ph archive

Divulgació científica

Contacte

Anna Cabré Albós
annanusca@gmail.com