Bienvenidos! Soy Anna Cabré

una científica trabajado en interacciones del clima y
en predicciones sobre el futuro de nuestra Tierra


"Equipo Homeward Bound #4"

Sobre mí

Nací en Barcelona en 1980. Ahora mismo me defino como oceanógrafa pero de formación multidisciplinaria. Estudié físicas en Barcelona y luego completé un doctorado sobre la estructura a gran escala del Universo en el Instituto de ciencias del Espacio. En 2009, me fui a Philadelphia (EUA) para trabajar en lentes gravitacionales y gravedad modificada en la Universidad de Pennsylvania. Esta experiencia me introdujo en el proceso de 'hacer ciencia' y del mundo de la academia, pero me di cuenta que el universo me queda demasiado lejos, así que lentamente hice la transición hacia el estudio de la Tierra, el clima y los océanos en el Departamento de la Tierra y las Ciencias Ambientales, y mucho más tarde en el Instituto de Ciencias Marinas de vuelta a Barcelona. Mientras tanto, la vida fue pasando. Ahora estoy criando a dos personitas, vivo entre Barcelona y Alemania, y nado, voy en bicicleta, escribo, toco la flauta y bailo tan a menudo como puedo.

Mi objetivo ahora es explorar fuera del mundo teórico en el que vive mi investigación (dentro del ordenador) y centrarme más en la comunicación política y científica, aunque solo sea para cambiar el mundo un poco con mi pequeño grano de arena. Como primer paso, participo en un programa de liderazgo para mujeres que culmina con una aventura a la Antártida.

Llévame a la Antártida!

Biografía resumida

  • Investigadora asociada en el Instituto de Ciencias del Mar (Barcelona) y la Universidad de Pensilvania (Filadelfia) (julio de 2018-ahora)
  • Postdoc 'Beatriu de Pinós' (cofinanciado con acciones Marie S Curie) en el Instituto de Ciencias del Mar (Barcelona) (2016-2018) con J.L. Pelegri
  • Investigadora postdoctoral en el Departamento de Ciencias de la Tierra y del Medio Ambiente en UPenn (2012-2015), con Irina Marinov
  • Investigadora postdoctoral en el Departamento de Física en UPenn (2009-2012), con Bhuvnesh Jain
  • Tesis doctoral en el Instituto de Ciencias del Espacio (Barcelona) sobre cosmología (2004-2008)(Descargar tesis), con E.Gaztañaga
  • Grado en Física en la Universidad de Barcelona (1998-2003)
Descargar CV

Programa Homeward Bound a la Antártida

Fui seleccionada para participar en un programa de un año de duración para mejorar el liderazgo en mujeres científicas con el objetivo de participar en decisiones políticas sobre el cambio climático. Este programa culmina con un crucero de 3 semanas a la Antártida con conferencias a bordo.

"HB es una iniciativa global de liderazgo que tiene como objetivo conectar y capacitar a 1000 mujeres científicas durante los próximos 10 años. El programa les proporcionará el liderazgo y capacidades estratégicas y de comunicación necesarios para ayudar a promover a las mujeres en puestos de toma de decisiones afectando la política en torno a la sostenibilidad de nuestro planeta ".

¿Por qué en Antártida?

La Antártida sigue siendo el único continente sin ciudadanos permanentes en ella. Sin embargo, algunas partes ya han notado las consecuencias del carbono emitido por humanos. ( Ver). La Antártida es naturaleza pura en su forma más brutal. Estar allí con mujeres de mentalidad similar proporcionará un entorno ideal para la colaboración, el aprendizaje y una historia que contar, esencial para inspirar el cambio necesario.

¿Por qué ahora?

¿Si no es ahora, cuando? El cambio climático ya está ocurriendo y las consecuencias son notables en muchas partes del mundo, con los peores resultados en los países más desfavorecidos. Como científico del clima, creo que no tengo excusa para no intentarlo. Creo que es posible un mundo mejor y espero hacer una contribución. Para un estudio extenso (y muy cuidadosamente revisado) sobre los efectos del cambio climático, vea el IPCC report.

¿Por qué yo?

Los científicos a menudo nos centramos tanto en nuestra investigación y la necesidad de solicitar fondos constantemente (buscar empleos,moverse) que a menudo olvidamos lo importante que es comunicar la ciencia. ¿Cómo son nuestros conocimientos y habilidades valiosos para la sociedad y para el futuro de la Tierra si no los compartimos? Yo tengo la motivación y la perseverancia para llevar mi conocimiento a un nivel superior, pero ciertamente podría usar clases de liderazgo.

¿Por qué mujeres?

Estamos muy poco representadas en posiciones de liderazgo. En algún momento del proceso, una gran proporción de mujeres se pierde por una variedad de razones, una de las más importantes es que la sociedad todavía premia y espera que los hombres ocupen estos puestos. Hay que trabajar para cerrar la brecha de género y ver lo que las mujeres tienen para ofrecer a la mesa de liderazgo. Solo pueden salir cosas buenas de esta iniciativa.

¿Me ayudas?

Visita mi página web de finaciación con más detalles sobre el programaa, que está subvencionado por donantes, pero sólo hasta la mitad del costo total. Si conoces una empresa, institución o escuela que esté interesada en patrocinarme, envíame un correo electrónico. Las 6 españolas seleccionadas para el programa nos hemos unido para trabajar como grupo. Visita nuestra página EllasLideran.cc

Clima y Oceanografía

Estudio el rendimiento de los Modelos del Sistema Terrestre para comprender la variabilidad espacial y temporal a gran escala de los patrones climáticos oceánicos y atmosféricos. Me interesa predecir los cambios a mediano y largo plazo debido al calentamiento climático y separar estos cambios de la variabilidad natural. En otras palabras, estoy interesada en los cambios de personalidad a largo plazo de nuestra Tierra (más allá de los cambios de humor a corto plazo que vendría a ser el tiempo que hace). Vea a continuación las principales líneas de investigación con las que estoy involucrado.

Publicaciones


Transferencia entre los giros subtropicales y tropicales en el Atlántico Sur

Modelización del fitoplancton del océano

Convección de mar abierto en el Océano del Sur y teleconexiones al resto de la Tierra.

Observaciones de fitoplancton desde el espacio

Zonas de oxígeno mínimo en el Pacífico

Evolución de las pescaderías con el cambio climático



South Atlantic transfer

We study regions that contribute to the northward heat transfer that occurs in the top 1000m of the Atlantic Ocean. The South Atlantic plays a crucial role in the returning limb of the Atlantic meridional overturning circulation that originates with sinking of cold and salty sater in the North Atlantic; the South Atlantic is the only basin that transfers heat equatorward from the subtropics to the tropics to compensate (northward) for the southward export of North Atlantic Deep Water (NADW), but it has traditionally not studied as much as the homologous North Atlantic. We have used a lagrangian technique to track the origin and path of the waters that end up in the subtropical or tropical gyres. We study the volume transport associated to each route, the paths of propagation, the spatial and depth structure of these paths, and the heat and freshwater gain along these pathways.


Open-ocean deep convection in the Southern Ocean

During the mid-1970s, a huge hole in the sea ice (polynya) opened during winter in the Weddell Sea, east of the Antarctic Peninsula, and was observed with satellites that had been launched few years before. The polynya closed and has only reemerged during the last 2 winters. It is open-ocean strong water column mixing that brings relatively warm water from the deep ocean to the surface and melts the ice. All the models that have this mixing events predict a stoppage of mixing with climate warming. We have explored the variability in Southern Ocean surface temperatures that result from pulses in open-ocean deep convection in the Weddell Sea (in the Southern Ocean), with a long 1000-year control experiment with pre-industrial conditions that exhibits strong convective events every ~70 years. We have found that fluctuations in Southern Ocean surface temperatures modify the energetic balance at the top of the atmosphere and the propagation of heat transport in both the atmosphere and the ocean. The atmospheric changes result for example in a weakening of the Southern Ocean westerlies, a warming of the atmosphere, and an increase in precipitation towards the southern tropics. The oceanic changes result in a strengthening of the formation of Antarctic bottom waters, and a weakening of the Meridional Overturning circulation during convective events. See this communication release. Here a copy of the published paper.


Oxygen Minimum Zones in the Pacific

We analyse simulations of the Pacific Ocean oxygen minimum zones (OMZs) from 11 Earth system model contributions to the Coupled Model Intercomparison Project Phase 5, focusing on the mean state and climate change projections. The eastern tropical regions are often low in oxygen due to sluggish ventilation and strong biological activity that consumes lots of oxygen. Oxygen is essential for most types of oceanic life, hence it is crucial to understand these regions and the predicted evolution within the next century. The simulations tend to overestimate the volume of the OMZs, especially in the tropics and Southern Hemisphere. Under the climate change scenario RCP8.5, all simulations yield small and discrepant changes in oxygen concentration at mid depths in the tropical Pacific by the end of the 21st century due to an almost perfect compensation between warming-related decrease in oxygen saturation and decrease in biological oxygen utilization. See publication (pdf)


Phytoplankton modeling

Understanding how global phytoplankton populations will respond to climate change is critical, since phytoplankton provide the ultimate food source for all marine organisms and draw down atmospheric CO2 by fixing inorganic carbon into organic matter via photosynthesis. We analyzed for the first time all 16 Coupled Model Intercomparison Project Phase 5 models with explicit marine ecological modules to identify the common mechanisms involved in projected phytoplankton biomass, productivity, and organic carbon export changes over the twenty-first century in the RCP8.5 scenario (years 2080–2099) compared to the historical scenario (years 1980–1999). All models predict decreases in primary and export production globally of up to 30 % of the historical value. ("Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models")
We also analyzed how phytoplankton change in the Southern Ocean. The models predict a zonally banded pattern of phytoplankton abundance and production changes within four regions: the subtropical ( 30 to 40 S), transitional (40 to 50S), subpolar (50 to 65S) and Antarctic (south of 65S) bands. We find that shifts in bottom-up variables (nitrate, iron and light availability) drive changes in phytoplankton abundance and production on not only interannual, but also decadal and 100-year timescales – the timescales most relevant to climate change. ("A latitudinally banded phytoplankton response to 21st century climate change in the Southern Ocean across the CMIP5 model suite")
See this outreach article summarizing our research.


Phytoplankton observations from satellite color data

Recent technological evolution has allowed the observation of phytoplankton abundance from space. When the Earth is not covered in clouds, satellites can see through to the surface of the Earth, and transform the ocean color into phytoplankton abundance with algorithms that use Chlorophyll as an indicator of mini-algae presence. Chlorophyll is a green pigment found in plants, responsible for absorbing the light needed for the photosynthesis. Hence, greener parts of the ocean have more biological productivity.
However, Chl and phytoplankton abundance do not follow a linear relation, as Chlorophyll can photoadapt differently depending on the light, nutrients, and temperature. I have been working with Tihomir Kostadinov and the group at UPenn on a novel bio-optical algorithm that retrieves size-partitioned phytoplankton carbon from ocean color satellite data, independently from Chlorophyll. This alrogithm is based on backscattering; the size of phytoplankton changes the spectrum of the light when scattering. We have studied the seasonality, interannual variability (associated to well known indices such as 'El Niño'), and long-term trends for phytoplankton and the different sizes in comparison to Chl, and have detected interesting differences across biomes.
Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution
Phenology of Size-Partitioned Phytoplankton Carbon-Biomass from Ocean Color Remote Sensing and CMIP5 Models
Inter-comparison of phytoplankton functional type phenology metrics derived from ocean color algorithms and Earth System Models


Effect of climate change on fisheries

Climate change is going to affect the habitat conditions that ultimately affect fisheries. Changes in temperature, stratification of the water column, wind patterns, food supply, all these modify the biomes where fish live. I have collaborated with a group from the Marine Research Division at AZTI that use the output of models to predict how the habitat of tuna, eel, anochovy is going to change in the next 50-100 years. See the recently published paper on 'Historical trends and future distribution of anchovy spawning in the Bay of Biscay'

Publications

Google Scholar
Research Gate

The Universe

I did my doctoral thesis on the large-scale structure of the Universe in the Institute of Space Sciences and a postdoc at the University of Pennsylvania. My focus was to compare data from large-scale surveys with standard cosmological theories with the objective of determining the best theories (and ruling out theories uncompatible with observations) and constraining the values of the different components of the Universe. This is my research keyword cloud, created with Scimeter.

See publications in cosmology Download thesis

Integrated Sachs-Wolfe effect

Gravitational lensing
Credit: NASA/ESA

Baryonic acoustic oscillations

Modified gravity in dwarf galaxies

Dark Energy Survey

Sloan Digital Sky Survey


Physicists currently believe that the universe is composed basically of dark energy (70%) and dark matter (25%), both unknown components. The rest is made of known (baryonic) matter.
The standard cosmological model starts with Big Bang, followed by a rapid period of expansion of the universe called inflation. After that, tiny almost homogeneous fluctuations that conform the primordial universe, start to grow while universe expands now in a relatively slow rhythm. 380,000 years after the Big Bang, the temperature is low enough to make the universe become neutral after the recombination of atoms with electrons. Photons are almost free of interactions since then and reach us in the form of a Cosmic Microwave Background (CMB). We can measure the spatial anisotropy spectrum of CMB temperatures and compare it to the expected spectrum of acoustic oscillations. This comparison provides a direct geometrical test from which we can deduce that universe is flat or nearly flat. This can be explained if we introduce a new constituent in the universe apart from matter, the dark energy. Dark energy acts as anti-gravity that accelerates the expansion and is also observed through standard candles Supernovae Ia. Although there is a well motivated model that can explain observations, neither dark matter nor dark energy are known elements, so it is important to use the large amount of newly available data to obtain tighter constraints on the constituents of the universe, the evolution of growth perturbations, the expansion history, and also to explore other alternatives, such as modification of gravity.
I worked with data from the Sloan Digital Sky Survey and with simulations that were prepared for Dark Energy Survey, that is now ongoing. I mostly used Luminous Red Galaxies as my favourite tracer of dark matter. These galaxies are intrinsically bring and hence can be seen further away and trace a larger volume than normal galaxies. I studied the redshift space distortions that arise due to the peculiar motion of galaxies, when shifts in the light spectrum due to the movement of galaxies are confused with the shifts due to the expansion of the Universe. These distortions are one of the ways that cosmologists have to study directly the growth of perturbations in the space-time. I also worked on the Integrated Sachs Wolfe effect (ISW), another direct way to study the growth trhough the evolution of gravitational potentials. ISW is detected when cross-correlating the remote cosmic microwave map with any more recent map that traces Large Scale Structure. Photons from the CMB can be modified when passing through the potential wells created by the large scale strucutre, if for example these potentials change with time. We can detect dark energy thanks to ISW, since we need a dark energy dominated universe to have an evolution of gravitational wells (although this could also be achieved by having a non-flat universe). Luminous Red Galaxies galaxies also allowed us to detect the baryon acoustic peak in the averaged correlation function, and we also detected it in the line-of-sight direction, which means a direct calculation of the Hubble constant! I also worked with photometric surveys (angular projections, photometric redshifts). I worked on modeling weak gravitational lensing as a way to also determine the dark matter in the Universe. Light from far away galaxies is bended when passing through all the dark matter between them and us. Finally, I was studying how to detect (or rule out) a type of modified gravity in dwarf (small) galaxies.

Publications

ADS publication list
astro-ph archive

Divulgación científica

Contacto

Anna Cabré Albós
annanusca@gmail.com